\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: MA201

Course Name: LINEAR ALGEBRA AND COMPLEX ANALYSIS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks

1 a) Prove that the function $\sin z$ is analytic and find its derivative.
b) Under the transformation $w=\frac{1}{z}$, find the image of $|z-2 i|=2$

2 a) Find the analytic function whose imaginary part is
$v(x, y)=\log \left(x^{2}+y^{2}\right)+x-2 y$.
b) Under the transformation $w=z^{2}$, find the image of the triangular region bounded by $x=1, y=1$ and $x+y=1$.

3 a) Show that $f(z)=\left\{\begin{array}{ll}\frac{z R e(z)}{|z|}, & z \neq 0 \\ 0, & z=0\end{array}\right.$ is not differentiable at $z=0$
b) Find the bilinear transformation that maps the points $-1, i,-1$ onto $i, 0,-i$.

PART B

Answer any two full questions, each carries 15 marks

4 a) Using Cauchy's integral formula, evaluate $\int_{c} \frac{e^{z}}{\left(z^{2}+4\right)(z-1)^{2}} d z$, where C is the circle $|z-1|=2$.
b) Evaluate $\int_{0}^{2+i}(\bar{z})^{2} \mathrm{dz}$ along
(i) the real axis to 2 and then vertically to $2+i$.
ii) the line $2 y=x$

5 a) Find all singular points and residues of the functions
(a) $f(z)=\frac{z-\sin z}{z^{2}}(b) f(z)=\tan z$
b) Evaluate $\int_{0}^{2 \pi} \frac{1}{5-3 \sin \theta} d \theta$.

6 a) Evaluate $\int_{C} \log z d z$ where C is the circle $|z|=1$
b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$

PART C

Answer any two full questions, each carries $\mathbf{2 0}$ marks
7 a)
Find the rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17\end{array}\right]$
b) Find the values of a and b for which the system of linear equations
$x+2 y+3 z=6, x+3 y+5 z=9,2 x+5 y+a z=b$ has (i) no solution
(ii) a unique solution (iii) infinitely many solutions
c) Show that the vectors $\left[\begin{array}{llll}3 & 4 & 0 & 1\end{array}\right],\left[\begin{array}{llll}2 & -1 & 3 & 5\end{array}\right]$ and $\left[\begin{array}{llll}1 & 6 & -8 & -2\end{array}\right]$ are linearly independent in R^{4}.

8 a) Solve the system of equations by Gauss Elimination Method:

$$
\begin{equation*}
3 x+3 y+2 z=1, \quad x+2 y=4,10 y+3 z=-2, \quad 2 x-3 y-z=5 \tag{8}
\end{equation*}
$$

b) Find the nature, index, rank and signature of the quadratic form
$x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$
c) Find the Eigen values and Eigen vectors of $\left[\begin{array}{ccc}4 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 3\end{array}\right]$

9
a) Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
b) Define symmetric and skew symmetric matrices. Show that any real square matrix can be written as the sum of a symmetric and a skew symmetric matrix.
c) What type of conic section is represented by the quadratic form
$3 x^{2}+22 x y+3 y^{2}=0$ by reducing it into canonical form.

